STAT2 Is a Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways
نویسندگان
چکیده
STAT2 is the quintessential transcription factor for type 1 interferons (IFNs), where it functions as a heterodimer with STAT1. However, the human and murine STAT2-deficient phenotypes suggest important additional and currently unidentified type 1 IFN-independent activities. Here, we show that STAT2 constitutively bound to STAT1, but not STAT3, via a conserved interface. While this interaction was irrelevant for type 1 interferon signaling and STAT1 activation, it precluded the nuclear translocation specifically of STAT1 in response to IFN-γ, interleukin-6 (IL-6), and IL-27. This is explained by the dimerization between activated STAT1 and unphosphorylated STAT2, whereby the semiphosphorylated dimers adopted a conformation incapable of importin-α binding. This, in turn, substantially attenuated cardinal IFN-γ responses, including MHC expression, senescence, and antiparasitic immunity, and shifted the transcriptional output of IL-27 from STAT1 to STAT3. Our results uncover STAT2 as a pervasive cytokine regulator due to its inhibition of STAT1 in multiple signaling pathways and provide an understanding of the type 1 interferon-independent activities of this protein.
منابع مشابه
STAT1 is essential for the inhibition of hepatitis C virus replication by interferon-λ but not by interferon-α
Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in ...
متن کاملStat2-dependent regulation of MHC class II expression.
MHC type II (MHC II) expression is tightly regulated in macrophages and potently induced by IFN-gamma (type II IFN). In contrast, type I IFNs (IFN-Is), which are far more widely expressed, fail to induce MHC II expression, even though both classes of IFNs direct target gene expression through Stat1. The unexpected finding that IFN-Is effectively induce MHC II expression in Stat2(-/-) macrophage...
متن کاملHigh basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells
The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is important for IFN-gamma induction, and NK cells are major producers of this cytokine. We report th...
متن کاملIFN-type-I-mediated signaling is regulated by modulation of STAT2 nuclear export.
Signaling through the IFN type I receptor is mediated by assembly of the ISGF3 complex consisting of STAT1, STAT2 and IRF9. Whereas STAT1 is instrumentalized by many cytokines, STAT2 is specifically used by type I IFNs. Here, we report that the main regulatory mechanism of nuclear accumulation of STAT2 is nuclear export. We determined the kinetics of nucleocytoplasmic shuttling of STAT2 in livi...
متن کاملStructural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function
Cytokine signaling through the JAK/STAT pathway controls multiple cellular responses including growth, survival, differentiation, and pathogen resistance. An expansion in the gene regulatory repertoire controlled by JAK/STAT signaling occurs through the interaction of STATs with IRF transcription factors to form ISGF3, a complex that contains STAT1, STAT2, and IRF9 and regulates expression of I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2016